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THE DIFFRACTION OF SOUND PULSES BY AN
INFINITELY LONG STRIP

By E. N. FOX, Pu.D., Trinity College, University of Cambridge
(Communicated by Sir Geoffrey Taylor, FF.R.S.—Received 24 July 1947)

The solution is obtained for the two-dimensional diffraction problem of a perfectly-reflecting strip
subjected to a plane sharp-fronted pulse of constant unit pressure at normal incidence.

Numerical calculations show in particular that the equalization of pressure round the strip
‘overshoots’ to produce pressures on the back of the strip up to a maximum of 21 9, in excess of
the incident unit pressure, with pressures correspondingly below incident pressure on the front of
the strip. The calculations also indicate that the pressure has become effectively steady, to within
39, or less, at the incident unit pressure in a time 5b/¢ after the pulse strikes the strip, where 25 is
breadth of strip and ¢ is velocity of sound.

The extension to any shape of normally incident plane pulse is given in terms of our basic solu-
tion by simple application of the principle of superposition. The formal extension of the solution to
the general case of any incident two-dimensional pulse field is also given.

Finally, it is noted that the same general method can be applied to a number of related two-
dimensional diffraction problems and in particular, solutions and numerical results have been thus
obtained for the problems of a slit and a regular grating. It is proposed to consider these problems
in further papers.

1. INTRODUCTION

The diffraction of sound waves and sound pulses by a perfectly-reflecting half-plane was
originally discussed by Sommerfeld (1896, 1g9o1) and subsequently by Macdonald (19o2)
and Lamb (1906, 1910). For the wave case, interest in the problem has been revived by
Magnus (1941) who showed that it can be reduced mathematically to the consideration of
an integral equation, which he then solves by a somewhat roundabout analysis to obtain
Sommerfeld’s solution. Recently Copson (19464) has given a more direct and elegant
solution of this integral equation.

Friedlander (1946), has considered the pulse problem in some detail and gives some
interesting results of numerical calculations for different shapes of pulse.

When we proceed from the half-plane case to those of an infinite strip, an infinite slit or
a regular grating, we pass to cases where the obstacle introduces a finite dimension and the
problem becomes more complicated. For an incident sinusoidal wave-train we have,
however, the classical solutions of Rayleigh (see Lamb 1932, pp. 517-538) for the extreme
case of wave-length long compared with obstacle or slit dimensions. Such solutions have
also been recently derived by Copson (1946 ) as approximate solutions of integral equations.
The problems of the strip and the slit subjected to an incident wave-train can further be
solved exactly in the form of an infinite series involving Mathieu functions as discussed by
Sieger (1908) and by Morse & Rubinstein (1938).

Friedlander (1946) mentions a suggestion by Bullard that Huygens’s principle, in the
form of Kirchoff’s solution (Jeans 1925, p. 522) of the wave-equation, can be applied to
pulse diffraction, but points out that the physical assumptions necessary for such application
to lead directly to an explicit solution, are not usually satisfied by sound pulses incident on
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72 E. N. FOX ON THE DIFFRACTION OF

normal obstacles. However, in some diffraction problems, reasonable approximations to
the physical conditions can be made by which Kirchoff’s solution of the wave-equation leads
to a simple type of integral equation which can then be solved either formally or by a
numerical process. In particular, it is relevant to note that in one such problem Kirkwood
(unpublished) obtained the solution of the integral equation by use of the Laplace trans-
formation.

Finally, the author has now obtained solutions for the two-dimensional diffraction
problems of a plane sound pulse incident normally on (i) a perfectly-reflecting strip, (ii) a
slit in a perfectly-reflecting plane, (iii) a regular grating of perfectly-reflecting strips, and
has carried out some numerical calculations to derive physical conclusions.

The first two basic steps are the derivation of an integral equation by use of Huygens’s
principle and its transformation, to a more amenable integral equation, by the Laplace
transformation. The third basic step involves the solution of the transformed equation by
using the known solution of the half-plane problem.

In the present paper is given the derivation of the solution for the strip problem and
a discussion of some physical implications of the results of numerical calculation. In sub-
sequent papers the solutions and results for the slit and grating problems will be similarly
considered. To avoid undue repetition in these later papers, someinitial formulae are derived
under fairly general conditions and we then proceed to the specific problem of the strip
(figure 1) subjected to a normally incident pulse of the basic H(¢) shape (figure 2).

The analysis is done throughout in terms of pressure rather than velocity-potential as the
former is usually the quantity of physical interest in pulse problems. Mathematically, of
course, this choice is immaterial since both quantities satisfy the wave-equation and the
same form of boundary condition at the strip.

2. (GENERAL THEOREMS

We consider first the general case, not necessarily two-dimensional, of an infinite per-
forated screen occupying the plane x = 0 and containing apertures of arbitrary shape and
size, the screen itself being perfectly reflecting. Let this screen be subjected to pulses from
any combination of point sources lying to the right (x> 0) of the screen. In particular, this
includes a plane pulse as the limiting case of a pulse from a source at infinite distance. Let
pi(t,%,7,2) be the total pressure at any point (x,y,z) and time ¢ due to all the sources in the
absence of the screen. We shall refer to p; as the ‘incident field of pressure’ or more briefly
as ‘incident field’ or ‘incident pressure’. Let p(¢,«,y,z) similarly denote the pressure in
the actual problem when the screen is present.

Since the problem is linear, we can superimpose the corresponding mirror image problem
in which an incident field p,(f, —#, y, z) arrives from the left and the pressure is p(¢, —x, ¥, 2)
at any point. But in the combined problem the boundary condition dp/dn = 0 over front
and back of the screen is automatically satisfied by the two incident fields; i.e. we can remove
the screen without altering the boundary conditions. Hence the pressure anywhere in the
combined problem is simply

bt 2y, 2) +p(t, — 2,9, 2) = pi(t, %, Y, 2) +p,(t, —%, 4, 2). (1)
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SOUND PULSES BY AN INFINITELY LONG STRIP 73

We thus have in our original problem that the sum of the pressures at any point P, (¥, y, 2)
and at its mirror image P’, (—x, y, z) in the screen is simply equal to the pressure at P due to
complete reflexion of the incident field at the plane » = 0. This means, in particular, that if
we can determine the field to the rear we can immediately deduce the field in front of the
screen and conversely.

If we now let x— 0 in equation (1) and if the point (0, y, z) lies in an aperture of the screen
then, since the pressure is continuous across the aperture we obtain in the limit, after
dividing by two, b=, )

for the pressure at any point within an aperture.
On the other hand, if (0, y, z) lies on the screen itself, the pressure is not necessarily equal
at back and front and when ¥— 0 in equation (1) we obtain

brtby = 2p; (3)

for any point on the screen itself, where the suffixes £ and b refer to front and back of the
screen.

Now, for a point (— X, y, z), where X >0, to the rear of the screen we can apply the well-
known Kirchoff solution (Jeans 1925, p. 522)

bl =X, 9, 2) = ff{cig;(gf ﬁ;n( ) iglfz}t_md& (4)

Where ¢ is the velocity of sound, r is distance from our point to any point on the surface §
of inward normal » and the integrand is to be evaluated at time ¢—r/c. For our surface S
we can choose the plane ¥ = —¢, where X>¢>>0, and a large semi-circle of radius R to the
left of this plane and we choose our origin of time so that the incident field first arrives at
the origin (0, 0, 0) at time ¢ = 0.

Since our incident field is assumed to be arriving from the right of the screen and the
semicircle is to the left we can, for any finite ¢, X, y, z by choosing R large enough, ensure that
t—r/c on the semicircle corresponds to times prior to the arrival of any field. The contribution
to the surface integral in equation (4) can thus be taken solely as arising from the plane
x = —c¢ and if we now let ¢— 0 the surface integral reduces to one over the apertures and
back to the screen. :

The argument ( Jeans 1925, p. 522) leading to the Kirchoff solution of the wave-equation
introduces a converging wave at a point within the region bounded by S. Ifinstead we intro-
duce a wave converging to a point (x’,y’, z') outside this region and otherwise follow the same
argument we obtain a result similar to equation (4) but with zero on the left-hand side,

namely /
’ 1 ff1arap 0 19p
0=l llarm ot ali) 7 ﬁn}t_r,/cds’ (5)
where 7’ is the distance from (x",3’,z’) to any point of S.
We can now apply equation (5) to the same surface, x = —e¢ and large semicircle to left

(w4

of screen, as before and choose for (x'y'z’) the mirror image (X,y,z) in the screen of our
previous point (—X,y,z) to the rear of the screen. As before, when R->c0 we get no con-

tribution from the large semicircle while as ¢ 0 the surface integral reduces to one over
10-2
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74 E. N. FOX ON THE DIFFRACTION OF

the rear of the screen and the apertures. But for the image points we then have the simple
relations ,

Y =r,
o _ o (6)
on  on’

so that the last term on the right of equation (5) becomes identical with the last term on the
right of equation (4) while the first two terms on the right of equation (5) are equal but of
opposite sign to the similar terms in equation (4). Hence adding equations (4) and (5)

we obtain ot —X,g, ) — ﬂ‘(l 0p)t 3 X>0), -

r dn

whilst subtracting equation (5) from equation (4) we obtain the alternative expression

=% =g [[laha a8 x=0. ®

The surface integrals in both equations (7) and (8) are taken over the apertures and the
back of the screen. Since dp/dn = 0 on the screen, however, the surface integral in equation
(7) is effectively taken over the apertures only.

Conversely, we can transform equation (8) so that it involves a surface integral over the
back of the screen only. Thus equation (8) applies for any arbitrary distribution of apertures
and in particular to the limiting case of all aperture and no screen for which p = p, every-
where. Thence, by subtraction, equation (8) will hold with p,—p for p, namely

bt =X 09—t ~X0,2) = o [ 5 S 0-p -0 5 (7)) a5 ©)

But from equation (2), p;—p = 0 over the apertures and thus the surface integral in
equation (9) involves in effect only integration over the back of the screen itself.

Summing up, by virtue of equations (1), (8) and (9) a complete formal explicit solution
of the problem can be obtained if we can determine either () the distribution of dp/dn over
the apertures, or (b) the distribution of pressure on the back of the screen, with varying
time ¢£. :

The relations we have given in this section are, of course, the pulse analogues of well-
known relations (Lamb 1932, chapter x) for sinusoidal waves.

3. PrLANE H(#) PULSE NORMALLY INCIDENT ON STRIP

8:1. Dertvation of integral equation

We now proceed to consider the particular problem of figure 1 in which an infinite strip
of finite width is struck at normal incidence by a plane pulse. Without any real loss of
generality we take the time variation in the incident pulse to be given by Heaviside’s unit
function H(¢) as in figure 2 since the formal solution for any other shape of pulse is then given
immediately by superposition (§ 3-8).

For ease in writing formulae we shall also make the problem non-dimensional by choosing’
the width 26 of the strip as our unit of length and the time 2b/¢ for sound to travel this width
as our unit of time. The wave velocity is then unity and our incident pulse is

pr=Hit+x), (10)
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SOUND PULSES BY AN INFINITELY LONG STRIP 75

where time is measured from the instant at which the pulse front strikes the strip. The
problem is two-dimensional with all quantities independent of z and we take the strip to
be in the plane x = 0 but leave our origin for y temporarily unspecified.

For any point (— X, y,0), where X>0, to the rear of the strip (though not necessarily in
the shadow) the general relation (7) becomes (noting ¢ = 1),

o9 =3[0 <u>

where the surface integral is taken over the rear of the plane x = 0.

N
B z
_H(t+x)
}
¢ 8
]
w
w
£
2.
D 0 time —
F1cure 1 Ficure 2. Incident pulse.

If we now write in the integrand

L) vt (12)

for a point (0,y,, z,) at time ¢ we obtain

b= %) =g [ [ Wt dindey (x>0), (13)

where 12 = X2+ (y—y,)2+23. (14)

But this holds in the limit X— 0 for a point in the aperture where equation (2) also holds
and hence from equations (2), (10) and (13) we obtain

27TJ‘ T ¢ !/07 dyOdZO) (15)

where 2= (y—yo)?+23 (16)

for any point (0,y, 0) lying on AB and CD in figure 1.
We now introduce the Laplace transformation by writing

X0, 4) f V(Yo t) e~ M dt, (17)
and since we assume an initial state of rest prior to the arrival of the incident pulseati =0

we have V(1) =0 (t<0), (18)
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76 E. N. FOX ON THE DIFFRACTION OF

whence it follows that f ) e MY (Y, t—1) dt = Jwe”myf (4o, t—7) dt
0

r

0

= e~ ¥ (Y0, A)- (19)

Hence if we apply the Laplace transformation to equation (15) we obtain

1 1 [ 0 e—/\r .
=) | e dyodz, (20)

where 7 is given by equation (16).
We can now perform the z, integration by changing from z, to r as variable of integration

to obtain 11

1 EJ_OOX% ) Kofd 19— [} dyo, (21)

where K, denotes, as usual, Macdonald’s Bessel function of order zero.
We now choose the origin of co-ordinates to be at the upper edge B of the strip and since
dp/dn = 0 on the strip itself we have from equations (12) and (17)

X(H0A) =0 (0=yy=>—1), (22)
whilst by symmetry about the centre of the strip we have
X0 ) = x(—=1=40, 1) (—1=4,)- (23)

Inserting equations (22) and (23) in equation (21) we then obtain

1 1 11
T 5| X0 ) KA ly—golbyot [ x(=1=90d) Kod|y—yo sy (y0). (24
0 —©

In this equation y, is now purely a variable of integration and we can change this variable
in the second integral by writing y, for —1—y, to give a positive range of integration; for
a point (0,y) on AB (figure 1) we can then write the equation in the form

7= ] "ty ) Kefh 190 [y lgo [ 00 d) Kefd (1 Fyty}dso (50), (25)

where we note that the modulus sign can now be dropped in the second integral.

Equation (24) holds, of course, also for a point (0,¥), < —1, on CD in figure 1 but since
we have used symmetry already in obtaining equation (24) its application to a point on CD,
after change of variables, will only lead mathematically to the same equation (25) obtained
by considering a point on AB.

3:2. Solution of integral equation

Equation (25) forms the basic integral equation of our problem and is analogous to the
simpler equation considered by Magnus (1941) and Copson (19464) for the half-plane
subjected to a sinusoidal train of waves.

To commence the solution of equation (25) we note that the second integral in it corre-
sponds to the contribution from CD for a point on 4B and if we omit this contribution we
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SOUND PULSES BY AN INFINITELY LONG STRIP 77

have in fact the integral equation for the half-plane case. Thus, if we denote by y, the solution
for the half-plane case, then yx, will satisfy the integral equation

A 2000 Kofd [ y—o 1y =, (26)

and in the known results for the half-plane case as given by Friedlander (1946) we have
merely to substitute our assumed form (10) for the incident wave and apply the Laplace

transformation to obtain Q pim
Xo(,A) = 1+7‘J O an? 0, (27)

where we may note that yx, is a function only of the product Ay.

We now seek a solution of the equation (25) for the strip case by the method of successive
substitutions in which the first integral is regarded as the dominant term on the right-hand
side of the equation. We therefore write

X=X~ Xt Xe=Xs oo (1) % o5 (28)
where y, is given by equation (27) whilst

[ 2l D KoLy =30 1y = [ 000 ) Kfdly-+0+ D}y (r20,5>0). (29)

Since we know y,, equation (29) may be regarded as an integral equation in which the
right-hand side is a known function of # and A and an explicit solution for y,,, is required.

This equation (29) is, however, a generalized version of the integral equation (26) for
the half-plane in which a general function of ¥ and A appears on the right-hand side. Let
us therefore consider generally the integral equation

A "l ) Kofd | y=go by = 0(0,2)  (5>0) (30)

in which » is a known function of y whilst « has to be determined for y>0.
Now for positive values of y we know that x,, as given by equation (27), satisfies equation
(26) whilst for negative values of y we find by substitution from equations (27) and (139) and

integration that " .
’IJ‘O XO(?/O: /1) Ko{)t l Y—Y, |} dyo = 2[0 ey sec?0 Jp

} (y<0) (31)
= M(—1y)

which defines a known function M.

We now replace y in equation (30) by y+y,, where y >0, y, >0, and subtract the resulting
equation from equation (30) to obtain

Afo u(yo, ) [Kold |7 =30 [} —Kold |9 +51 =90 F] dyo= v(y, 1) —0(y+y1,2)  (y=>0,5,>0).
(32)
We then multiply this equation (32) by x,(y,1) dy and integrate from y = 0 to oo to give
/lf Xo(y>4 f u(Yo, ) [Kofd | =40 [} —KofA |y +31 =y, [} dyody
= fo X045 A) {o(9,0) —v(y +1, ) }dy

=Wlyd) (4:>0), (33)
where W is known since y, and v are known. '
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78 E. N. FOX ON THE DIFFRACTION OF

But from equations (26) and (31) we have
/lf Xo(¥:A) Kofd | y—yo [}dy =7 (y,0),

0 DKy =7 (000 i
= MQ(y )} (<91)-

Hence, assuming that the solution  is such that the order of integration can be changed
in equation (33) and applying equation (34), we obtain

f u(yo, A) [m— M{A(y1 —yo)}l dyy = Wy, 1) (9:=0). (35)

This integral equation with y; as independent variable can easily be solved by applying
the Laplace transformation and using the superposition theorem of the operational calculus
(Jeffreys & Jeffreys 1946, pp. 375-376).

Thus we write u(g,A) = Jwe*qyl u(yy, A) dyy,
0
Mg, ) = | "enfr—M{ly,)}dy, (36)
Wig, ) = | "ot (y,,2) dy,

and apply the Laplace transformation to equation (35) to obtain

. Wi(g, )
u(q,A) = =% (37)
M,(g,2)
By substituting from equation (31) in the second of equations (36) we find in fact that
= A
- J A
1 qN q + 1’ (3 8)
so that equation (37) becomes
+A\
v =1L (L) v, (39)

Now it is interesting to note that the corresponding Laplace transform of y,(1y;) as
defined by

Xo(as ) = [ e w(igy) dy, (40)
is found, after substitution from equation (27), to integrate out in the simple form
+2
Xo(g54 J = (41)
whence equation (39) may be written
P —
a(g,0) =L Wig, ) (g, ). (42)

Since W(y,,1) = 0 when y, = 0 from equation (33), ¢i is the Laplace transform of
W'(y,,A), where the dash denotes differentiation with respect to y;. Hence by the super-
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SOUND PULSES BY AN INFINITELY LONG STRIP 79

position theorem of the operational calculus we can interpret equation (42) and then drop
the suffix unity to obtain a solution of our original equation (30) in the form

) = 53 [ W =) 10(00) i (43)

For a given function v(y, 1) the rlght-hand side of this equation (43) is known by virtue of
equations (27) and (33). As in the special case to be considered, however, it will often be
simpler to revert to equation (89) and after finding W from equations (33) and (36), to
interpret direct for « by use of the Bromwich integral.

The general conditions to be satisfied by the function v in order that equation (30) has
a valid solution for u of the form obtained, have not been examined since for our physical
problem we are concerned only with a particular form for » and we can check our solution
a posteriort.

Consider now the special case when

v(y,4) = Kfd(y+8)} (9=0,£=0), (44)

where £ is a positive real parameter.
From equations (33) and (31) we then have

Wiy, 4) = % [M(28) — M{A(y,+E)3]- (45)

Hence applying the Laplace transform we find, by using the definition of M in equation
(31), that
—— 0 <] 3
W(0,) = [ Wiys, ) dy = 2982 [ mon [ Mensonmo gy,
0 0 0

M(/lg) g 7 e—-){gseczﬁ
gl AJy g-Asec?d

i o= Agsec?d sec2f
L q(q+Asec?d) (46)
Hence from equation (39) we have
§I+/I)J‘%7’ e~ Msec?lsec? ()
ug, 1) = A/( A JJo g+Asec?d @. (47)
Before interpreting, we can simplify this by change of integration variable from 6 to Y,
where
tanf = J (g+) ¥ s
whence sec20df = _J((_le) dy,
24\ A8Y \ (48)

g+Asec?d = (q+/1)(1 +§),

AEsec?d = AE+AY 4-qY.
With this substitution equation (47) becomes

_ 1 [® e~ Y g~ ME+Y) g
ol =2, e (7)1 (49)

Vol. 241. A. 11
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80 E. N. FOX ON THE DIFFRACTION OF

which is in fact of the exact form of the Laplace transformation since the operator ¢ now only
appears in the factor e=¢% of the integrand. Thus the interpretation of equation (49) may be
immediately written down as w(y, D) = Iy, 2), (50)

where [ is a function of two variables defined by

I(a,p) = %ij;) o (51)

We have now found that equation (50) gives a solution of the integral equation (30) when
v is the special case given by equation (44), i.e. we have obtained the relation

A T0y0, 28 Kofd |y —yo Y dgo = Koy +£) (420, £20), (52

where 7 is defined by equation (51).

This relation (52) is the basic result required for the solution of our physical problem and
in appendix A is given a direct check of this result by substitution from equation (51) and
some manipulation in integration.

We can now return to our physical problem which requires the solution of equation (29).
Thus if we put £ = 1+y" in equation (52), multiply throughout by y,(y’,1) and integrate
from y’ = 0 to o0 we obtain

f :xr(y’,i) Kid(y+y' +1)}dy'= A f :xr(y’,l) f :I{Ayo,ﬂ(y'+ D} Ko |y —y, |} dyody’

= [ Kefhly=9o 3 A0 A+ 1} 0,0 dy . (53)

Hence comparing with equation (29) we obtain

Xena0:1) = [ 00/, 2) fdg Ay + 1)} dyf

© =Ay+y'+1) 4
= () (54)
We have thus obtained a solution of the integral equation (25) in the explicit series form
of equation (28) in which the first term is given by equation (27) and each subsequent term
is then given from the preceding term by equation (54). This solution is of course for the
problem as transformed by the Laplace transformation with respect to time # and we have
now therefore to interpret our solution by application of the inverse transformation.

3:3. Solution for ¥ (y,t)

By virtue of equation (17) we have, corresponding to equation (28) a solution for ¥

of the form Uy, 8) = ¥oly, ) — ¥, (y, 8) +45(y, £) — ..., (55)

where 00 ) = [ e (0, 1) iy (56)
0

and conversely by the Bromwich integral

0:) =5 P nln. ) al (57)
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Substituting from equation (56) in equation (54) we obtain
11 ooe-/\(y+y'+l+to) y’+1) , ,
= : (y',8,) dtydy’, 58
Xl ) = 2 [ (5 st didy (58)
and applying the inverse transformation we interpret this as
1 ;ﬁ Y, tO) (y’+1)8 ’ ’
- t—ty—y—y —1)dt,dy’, 59
Vraalint) =3 [ B, [ 0—ty—y—y —1) drody (59)

where d(¢) is the Dirac function, of Laplace transform unity, which can be defined by (see
Carslaw & Jaeger 1941, appendix III)

8(f) =0 (t<0)
:61 (0<x<e)l (e—0). (60)

=0 (x>¢)

We can now perform the {; integration in equation (59) to obtain

z# Y t—y~y’~1)J(y’+l)d, S
. 7 >0, y=>0). 1

The value of ¥, as mterpreted from equation (27) corresponds of course to the known
solution for the half-plane and is

() =00+ [ (FY) Ht—y) - (r=0) (62)

in which the first term §(#) is the direct contribution from the incident wave of equation (10)
and the second term is the contribution from the diffraction wave sent out from the edge
of the half-plane.

Since ¥, is zero for negative times we now note that in equation (61), with r = 0 to give
1, the integrand is zero when y'>t—y—1 and consequently if {<y+1 the integrand is
zero over the whole range and we therefore have

Vi) =0 (#<l-+y). (63)
If we now assume generally that for a particular value of 7,
U, (9,0) =0 (t<r+y), (64)

then the integrand in equation (61) will be zero when ¢—y—y —1<y'-r, i.e. when
t<r+1-y+2y" and this will hold over the whole range of integration when ¢<<r-1-+y and
¥, will then be zero, i.e. equation (64) will hold for r+ 1 if it holds for r. Since by equation
(63) it holds for » = 1 it follows by induction that it is true for all r.

Thus the successive terms in our solution as given by equation (28) each start their
contribution at unit time after the preceding term and since in our choice of units this unit
time is the time taken for a sound pulse to travel the width of the strip, our solution corre-
sponds, as it should do, to a series of diffraction waves starting from each edge, a wave from
any one edge starting a further wave when it reaches the farther edge and so on.

Moreover, we note that by virtue of equation (64) that the solution obtained by stopping

at any term ¢, in equation (55) is in fact the exact solution for #<r+1+y. Conversely for
‘ 11-2
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any finite time our solution consists only of a finite number of terms corresponding physically
to a finite number of ‘reflexions’ of the original diffraction wave from each edge. We may
also note that by virtue of equation (64) the range of integration in equation (61) is in fact
finite.

Equations (55), (62) and (61) thus give an explicit formal solution for ¥(y,t) which is
the distribution of —dp/dn on AB in figure 1 and by symmetry this gives also the distribution
on CD in figure 1, whilst on BC we have ¢ = 0 by virtue of the boundary condition.

We have thus obtained the solution for the distribution of ¢ over the whole plane x = 0
and hence from equation (13) the pressure at any point to the rear can be obtained whilst,
finally, equation (1) will then give the pressure field in front of the plane x = 0 containing
the strip.

3-4. Pressure on back of strip

Although we have thus obtained a complete formal solution of the problem, the evaluation
of pressure from equation (13) is likely to be laborious. Further, the pressure is usually of
more physical importance than ¥ itself and we shall now proceed therefore to obtain an
alternative form of solution in which the pressure on the back of the strip is given directly.
Thence by use of equations (9) and (1) the whole pressure field can be evaluated without the
intermediate calculation of 9.

Now equation (25) was obtained from equation (13) by putting X— 0 and p = H(#) and
then applying the Laplace transformation. For a point (0,y, 0) lying on the rear of the strip
the same argument can be applied save that the left-hand side of equation (13) is now
unknown and if we write '

Up,2) = [ e plndt (~1<y<o0), (65)

for a point on the rear of the strip, then instead of equation (25) we obtain

1 1=
1I(y,4) = ,—JO XY ) KolA |y, I}dyo+;,f0 X0 A) Kofd [ 1+y+yo}dyy (—1<y<0). (66)
Since it is easier to think in terms of positive arguments we now write
y=—Y (0<¥<1), (67)

and we note that in the first integral of equation (66) the argument of K is A(y,+ Y) whilst
in the second integral it is A(y,+ 1 — Y), both these arguments being positive so that modulus
signs can be dropped. We can therefore write

II(y,4) = A(Y, ) +A(1-T,1)  (0<Y<1), (68)
1 =]
where MY =2 [ X000 KT 90} dyy (V20). (69)
If Ais the Laplace transformation of a function F, so that

AT, ) = f MY D) dt, (70)
0
then from equations (65) and (68) we have
p(yat):F(Yat)"l'F(l_‘Yat) (0<—y=Y<l}, (71)

the form of which corresponds of course to the symmetry of the problem.
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Although equations (68) and (71) are only valid for the range 0<<Y<{1 we may take the
function A to be defined by equation (69) for all positive ¥ and similarly its interpretation
F will then be defined for all Y>0.

Now, using equation (69), we may rewrite the basic integral equation (25) in the form

/l ©
1= [ A ) K| 5=y [ dyo 1A (149, ) (v0). (712)
Also, by mere change of symbols, we may write the fundamental relation (52) in the form
Afo 1Y, AY) KA | Yo —go |} d¥y = Ko{A(Y+y0)}  (Y=0,49=>0). (73)

If we now write ¥, for y in equation (72), multiply by I(1Y,,1Y) dY, and integrate from
Y, = 0 to co we obtain, after change of order of integration and use of equations (69) and
(73), the result

f 10, AY) dY, = A(Y, 1)+ f “A(L+ Y, ) I(AY,, A7) dY, (Y=0). (74)
0 0
This equation can immediately be solved by successive substitutions in the form
A(Y,2) = Ag(¥, ) = Ay (T, ) +Ay( T, 1) ., (75)
where B(Y,2) = [ "1Q¥,,2Y) dE,, (76)
0
B,a(1,) = A “T¥, A7) A, (1, 4) dF,. (77)
0
Similarly we can write
F(Y, ) = By, ) =BT+ (Y, ) — oo b (1) BT ) 4y (18)
where from equations (70) and (75)
A(Y,0) = f “eNE (Y, 1) d. (79)
0
Equation (77) may then be written, by use of equations (79) and (51), as
12 [ By t) Ao Y
A (Y,2) = ;,fo fo . «/(17&) dY, di,, (80)

If we now interpret this by the Bromwich integral and perform the ¢, integration, in
analogous manner to equations (58) to (61) we obtain

| 1(*F(1+Y,t—Y—Y,) /(Y
BTt =3 [ ey °)J(?())dYo (Y>0,7>0). (1)

Similarly, by interpreting equation (76) we obtain

0

Fy(¥,0) =2 [tan- A/t_i%f}ﬂ(;— Y) (T>o0), (82)

which corresponds of course to the pressure on the rear in the half-plane case.
By an analogous argument to that used for the ¢, functions we can prove by induction that

F(Y,) =0 (t<r+7Y) (83)
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84 E. N. FOX ON THE DIFFRACTION OF

and these F,(Y, ) terms thus correspond physically to a succession of diffraction waves from
the top edge whilst the F,(1—Y,¢) terms in equation (71), using equation (78), correspond
to the similar waves from the bottom edge of the strip.

In view of equation (83) it is convenient to take a different origin of time for each F,
and we write

E(Y,0)=G,(Y,1), (84)

T={(—1r—Y,

whence equations (81) to (83) may be written
2
Go(¥,7) =%{tan”1 J%}H(T), (85)
LG, (14 r—2Y) (Y

Gra(Xor) = [ TR () ar, (56)
Gr(Y’T) =0 (7<O)9 (87)

where 7> 0, Y >0 and we can write equation (78) in finite terms for any particular interval

of unit time as
n

F(Y,t) = 20(—1)’G,,(Y,t—— Y—r) (n+Y<t<n+147). (88)

It may be noted that although 0<<Y<1 on the strip, the integral in equation (86) implies
that any G, functions must be evaluated for a range of values of ¥>1 in order to calculate
G, on the strip.

Our final solution for the pressure at any point on the back of the strip distant ¥ from an
edge is thus given by equations (71), (85) to (88) in explicit form. Thence equation (9) gives
the pressure anywhere to the rear and finally equation (1) then gives the pressure field
in front.

3-5. Uniqueness of solution

To prove the uniqueness of our second form of solution so far as our physical problem is
concerned we know first from the initial conditions and since no wave is arriving from the
left that the pressure on the back of the strip must be of the form given by equation (71),
where the two functions are the same by symmetry, and each term corresponds to effects
propagated round one edge. To show that our solution for /'is unique we then have from the
initial conditions that no effects arrive from the top edge to the point distant ¥ from it until
after time Y (our wave velocity being unity), i.e.

FY,f)=0 (t<Y). (89)

Now we have shown that the Laplace transform A(Y, A) of F'satisfies the integral equation
(74), and if we interpret this directly by application of the Bromwich integral we find

_ LR T Y (Y
Fy(T0) = F(Y )+ [ 2y ) (5 ar, (90)

where Fj is given by equation (82) as before.
Our solution is one solution of this equation (90) and satisfies also equation (89). If there
is a second solution satisfying both these equations then, since the equations are linear, it
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SOUND PULSES BY AN INFINITELY LONG STRIP 85
will differ from our solution by the addition of a solution of the homogeneous integral
equation 1 (= F(1+Y,,t—Y—Y,) /(T

O:F(Y:t)+;JO Y17, J(?;)dz)a (91)

this additional solution being required also to satisfy equation (89).
Let us assume that the additional solution satisfies

F(Y,)=0 (1—Y<r, (92)

up to some 7>>0 and then consider equation (91) for the interval r<¢— Y <r-+1. For this
interval the arguments of F in the integrand of equation (91) will satisfy

(t—Y—Y)—(1+Y) = t—Y—1—2Y,<t—V—1<r

and thus by equation (92) the integral is zero and equation (91) gives zero F(Y, ) for the
interval r<<¢{—Y <7+ 1. Thus if equation (92) is true for r it is true for 7+ 1 and since it is
true for r = 0 by equation (89) it follows by induction that it is true for any r. The additional
solution F'is thus always zero and our solution is therefore the unique solution of the problem.
By a similar argument it can be shown that our first form of solution, involving the pressure
gradient ¢ (y, ¢) is also unique. In either form, once ¢ or F'is determined uniquely, the field
everywhere is then determined uniquely by equations (1) and either (7) or (9).

Essentially, although the basic integral equation (15) and the resulting equation (25)
do not have unique solutions, our solution is made unique by satisfying the condition that
there is no incident field from the left and using the fact that effects cannot be propagated
round the edges faster than the velocity of sound.

8-6. Average pressure on strip

A quantity of physical interest is the force on the strip due to the pulse, which per unit area
is the average net pressure p given by

7=[ (hpar, (93)

where the suffixes refer as before to the front and back of the strip. By use of equations (3)
and (10) we may write

p= Zfol (hi—1p,) Y
= (1 "pb)a (94;)

where p, denotes the average pressure on the back of the strip.

The average pressure , can always be obtained by numerical integration of the pressures
calculated from our solution for individual points on the back of the strip. In the first two
intervals up to ¢ = 2 we can also obtain direct explicit formulae for this average pressure
which lend themselves to accurate evaluation and serve, in particular, as a check on the
numerical integration process used for subsequent times.

To derive these expressions it is useful and of some intrinsic physical interest to obtain
first a relation between the force on the rear of the strip and the flow to the sides of the strip.
Thus, in dimensional units the wave-equation is

2p 0% 19%
o2 o = o (95)
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86 E. N. FOX ON THE DIFFRACTION OF
and if this is integrated with respect to y between limits y = —a and y = f, where a and /f
are positive constants, we obtain

A 32[7 1 aZp

A (96)

Now up to any finite time £, (say) we can always choose o and £ large enough so that the
region of reflected and diffracted waves from the strip lies wholly within y = —a and y = /.
There is then no flow across these planes and for /< ¢, the second term in equation (96) will
vanish and thus

axzf pdy 2(%4 pdy  (t<ty). (97)

The integrated (or average) pressure between y = —« and y = f thus satisfies the plane
wave-equation and in particular to the rear of the strip it must behave as a wave travelling
in the negative x direction since there are no effects coming from ¥ = —oo. We therefore have

p
J pdy = function (ct4x) (x<<0,1<t)), (98)

10 d (# B9
whence S _ap (-ﬂf_apdy:f_“ﬁdy (x<0, 1<1,). (99)

This holds also in the limit x——0 and referring to figure 1, the integrals will then be
taken over the back of the strip BC and along portions AB and CD to the sides in the plane
of the strip.

But on 4B and CD we have p = p; by equation (2), whilst on BC we have dp/dx — 0 by the
rigid boundary condition. Hence in the limit x——0, equation (99) becomes

J b, dg+jca/’l dy+fA3pl dy fca‘bdﬁj apdy (1<), (100)

where limits refer to corresponding points in figure 1 with points D and 4 subject to the
restriction that they lie outside the disturbance due to the strip up to time ¢,.
But the incident wave is itself a plane wave travelling in the negative x direction so that

we have
9, _op;
cdt ox’ (101)
whence equation (100) may be written
i
[y~ [ 0 (o-pyay+ [ T 0-m)ds (1=t (109

It we now denote by v the particle velocity component in the negative x direction, and

by p the mass density, then w

P % (103)

and inserting this in equation (102) and integrating from —O0 to ¢ we obtain

B C 4
S| by =of 0—wdy ol 0wy (1<n). (104)
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SOUND PULSES BY AN INFINITELY LONG STRIP , 87

The relevant points 4 and D in figure 1 have been restricted only by the condition that they
lie outside the disturbance due to the strip up to time ¢,. In fact, v and v, are identical outside
this region so that the integrands on the right-hand side of equation (104) are zero outside
the region of disturbance due to reflexion and diffraction at the strip.

The physical interpretation of equation (104) is that the excess rate of total flow to the
sides due to the presence of the strip is proportional to the total force (or average pressure)
on the rear of the strip.

The preceding relationis have been derived generally for any time-variation in the
incident pulse. If we now consider our basic pulse defined by equation (10) and revert to
our non-dimensional units we can, by use of symmetry and equation (12), write equation
(102) in the form

e[\ Boay = of i) -0}y, (105)

where we have let the points 4 and D tend to infinity to cover generally the case of any
finite time ¢,.
If we now consider alternative derivations of expressions for the average pressure we have
first from equation (71) .
By =[ F(7,0+F1~Y,0}d¥

_ QJIF(Y, 9 dy, (106)

whence, by equations (78) and (84), we require the Y integration of the successive G,
functions as given by equations (85), (86) and (87).

Secondly, we can revert to an earlier stage of our solution and seek the Y integration over
the strip of the Laplace transforms A, as defined by equations (76) and (77), and then inter-
pretas a final step to obtain the average pressure g, by virtue of equations (78), (79) and (106).

Thirdly, we can use equation (105) and seek the y integration of the ¢, functions, as
defined by equations (61) and (62), with a final integration with respect to time to obtain p,.

Fourthly, we note that the Laplace transformation of equation (105) gives

f :e“"tﬁbdt _ f :A(Y, 2 dY

- [ o -, (107)

whence we can seek expressions for the average pressure on the back by use of equations
(27), (28) and (54) with interpretation as a final step.

By virtue of equation (64) it will be noted that ¥, will not contribute to equation (105)
until ¢>=r. Hence, although the transformed equation (107) will contain contributions
from all y, functions, the subsequent interpretation for p, will contain no contribution from
any particular y, until £>7.

For the first interval 0<¢<1, the evaluation of 7, is relatively easy by any of the four
preceding methods but for the second interval 1<¢<2 the fourth method proved the best
and we will therefore use it for both intervals.

Vol. 241. A. 12
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88 E. N. FOX ON THE DIFFRACTION OF
0<i<1

The only contribution of ¥ to p, arises from the y, term and we have from equation (27),

fw (Xo - 1) dy = ?.J‘wfﬂe—;«ysecze tan2@ddf a’y
0 TJoJo

2 [i7 tan?d 1
=)y Tseczo® = ap (108)
whence from equation (107) fwg—Atﬁb dt = _/112,
0
which interprets to give py=1 (0<i<1). (109)

In the first interval, therefore, the average pressure (and total force/unit length) on the
back of the strip has a simple linear increase with time. This result depends, of course, only
on the half-plane solution, and it is perhaps worth noting that, in dimensional units, for
a pulse po H(ct-+x) incident normally on a half-plane, the total force/unit length on the back
at any time is §p,ct, that is, an average pressure of $,/2 on the portion of the half-plane
covered by the diffraction wave from the edge.

1<i<2

For this interval we have the same contribution from the y,— 1 term as in the first interval
but in addition we have a contribution from y,;. Now from equations (54) and (27)

" (y ,[) _ 1fooe—/\(y+y’+l) (!/I“l‘l 9 [®e—My+y'+1) (y’+1)

mloy+y' 14\ y )y+?§oy+f+4 y
Hence, if we integrate x; from y = 0 to oo, interchange orders of integration and write
y = (y'+1) tan? ¢ to substitute ¢ for y as variable of integration we obtain

J‘%ﬂe-‘ay'secz@ tan20dfdy’. (110)

0

© ) © MrIT © ;i i ‘
f X1(9, ) dy = gj f e~ A Dsecd deh gy’ +izf f f ¢=My'sec?0 tan?2 ) ¢ AW T Dsec? b df dip dy’
0 mJoJo mJoJo Jo

If we again interchange the order of integration, the y’ integration can be performed
to give

dfdp. (111)

© 04 _“2 imp—Asec? ¢ 4 (i7pim g—Asec?Pan2 ()
JO x(y,A) dy =~ o Asec?¢ ), 1, A(sec?0-+sec? §)

We can now use the identity

tan?d sec?0(14-cos? )

— _ 2
sec2f-+sec?¢d  sec?f+sec’d cos*

to reduce the ¢ integration in equation (111) to standard integrals and we find
0 %ﬂ
f Xi1(y,A) dy = Ef e~rse?d [(sec? P+ 1) cos? pdg
0 A 0

1 (i
=7ﬁfo e=1secn(1+cosy) dy (112)

after using the substitution sec?¢ = sec.
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SOUND PULSES BY AN INFINITELY LONG STRIP 89

The total effective contribution to equation (107) in this second interval is thus from
equations (108) and (112),

o 1 2 i
fo e NPy dt = P_F/I—Zfo e=rsec(14-cos 1) dy, | (113)

whence interpreting,

by = t—%f%ﬂ(t——sec n) H(t—secy) (1+cosy) dy

0

¢
= t—%f (¢—secy) (14cosy) dy
0

= i 2{secttand—{—log (sec{+tan )} (1<t<2), (114)

where { is a parameter defined by sec{ =t. (115)

For comparison with an asymptotic solution we require also the net impulse/unit area on
the strip which, by virtue of equation (94), is

t ¢
fﬁdt= 2t—2fp,,dt. (116)
0 0

Using the parameter { it is easy to integrate equation (114) with respect to time and we
find for the first two intervals from equations (109) and (114),

[Ba=5 (o<, (117)
0
ft])bdtztﬁb—g%—%{gseczé’—l—secgtan§—tan§-log(sec§—l—tan§)} (1<i<2). (118)
0

Equations (94), (109) and (114) to (118) thus enable both the net force/unit area and
the net impulse/unit area exerted on the strip by the pulse, to be evaluated without difficulty
to any reasonable degree of accuracy up to time ¢ = 2.

3-7. Asympiotic solution

Whilst our solution is not difficult to evaluate for the first few intervals, it is obviously
not convenient for large times involving the calculation of many diffraction waves and
the summation of their effects. In our strip problem with the incident H(#) pulse we know,
however, on physical grounds, that the pressures everywhere on the strip will tend ultimately
to the unit incident pressure and numerical calculations (§ 5) indicate that such equalization
has effectively taken place after about ¢ = 2-5, i.e. 2-5 X the time for a sound pulse to travel
the width of the strip. Only three diffraction waves have therefore to be evaluated to cover
the time to effective equalization. Physically, all that is of much interest occurs in the early
stages when our form of solution is eminently suitable and an alternative form of solution
suitable for large times is thus only of minor interest in this problem. ‘

The first approximation to an asymptotic solution, analogous to Rayleigh’s approximate
solution for a sinusoidal wave-train of long wave-length, can be found by the following
argument.

If we define y = f Cen(p—p) di, (119)
0

12-2
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90 E. N. FOX ON THE DIFFRACTION OF
where p; is given by equation (10), then p’ will satisfy, in our non-dimensional units,
VZp’ — /12p’ (120)
in space and the boundary condition
p' (i
ax_—foe Digp=—1 (121)

on the strip.

Now, in the Laplace transformation the solution for the original function when f—c0
corresponds to the solution for the Laplace transform when A— 0. Hence the first approxi-
mation to our asymptotic solution is obtained by neglecting the right-hand side of equation
(120). The solution for p" is then the same as for the velocity-potential in the problem of
a lamina of unit width moving broadside-on with unit velocity in an incompressible fluid.
From the known solution (Lamb 1932, p. 84) for this problem we can then obtain, in particular,

1
J p'dY—=1im on front of strip,

01 (/I - 0)
f p'dY 1  on back of strip,

0

1
which we interpret to give f prdY —H(t) +§md(¢),
. (t— o) (122)
[ par—n@)—gma).
0

Since &(¢) is zero except at ¢ = 0, equation (122) merely states the trivial result that the
average pressures on front and back of the strip tend asymptotically to unit pressure corre-
sponding to eventual complete equalization of the incident pulse round the strip.

However, if we consider the net impulse/unit area averaged over the strip we obtain from
equations (93) and (122), ;
fopdt_%w (t—00). (123)

Similar, corresponding to the known semi-circular distribution of velocity-potential
over the strip in the incompressible flow problem, we have

[(t=p) @t =2f (1 =p) dt>2 4T (11} (1->e0) (124)

for the net impulse/unit area on an element of the strip at distance ¥ from an edge.

Equations (123) and (124) serve, at least, as a check on numerical calculations of our
main solution.

3-8. Solution for any shape of normally incident plane pulse

Given the preceding solution for the incident pulse H(f), the solution for any other time-
variation in the incident pulse can be immediately obtained by application of the principle
of superposition, i.e. in effect by the superposition of the effects of successive infinitesimal
increments dp;. Thus if we distinguish our solution for the pressure at any point due to the
H(?) pulse by the suffix zero, then the pressure at this point for an incident pulse p,(¢) striking
the strip at time ¢ = 0 will be given by

p=[" polt—n) 7000} (125)
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We write — 0 as the lower limit in this equation to indicate that we must include the con-
tribution of an infinite dp;/dt at ¢ == 0 when the incident pulse has a sharp front.

The application of equation (125) can in practice be made in two ways. First, we can
apply it to our mathematical form of solution with subsequent numerical evaluation, or
secondly, we can apply it directly to our final numerical values for p, using numerical
integration of equation (125).

The first method reduces to the application of equation (125) to the first term G, in equation
(88) to obtain a new G from which the subsequent terms are obtained by equation (86)
as before. Physically, this corresponds to the fact that the incident field enters directly only
into the production of the first diffraction wave from each edge and we can therefore
consider any shape of pulse by using the appropriate solution of the half-plane problem to
replace equation (85). This first method has advantages if the shape of incident pulse is
such that the new G, can be expressed simply in terms of known tabulated functions. On
the other hand, if the new G, has to be evaluated by numerical integration it would appear
easier to use the second method of direct numerical integration of equation (125).

By change of integration variable we can write equation (125) in the form

o= 1l gy e-3 (126)

whence we can also write for a point on the strip or to the rear,

p=ti=[ o) =B (il — 0} (127)

We now note that p,~1 corresponds to approximate equalization of pressure in our
basic case of the H(¢) pulse and the calculations described later indicate that such equaliza-
tion occurs on the strip itself to order 3 9, or less by time ¢ = 2-5. Away from the strip we
should expect similar equalization to occur if anything within a shorter time, i.e. p,— 1, will
only be appreciable in equation (127) for a range of 2+5 or less in z. In general therefore,
the application of the principle of superposition by either method will only involve a limited
range of integration and calculation for practical purposes.

4. SOLUTION FOR ANY INCIDENT TWO-DIMENSIONAL FIELD

If we have the general case in two dimensions of incident pulses, not necessarily plane,
coming from any direction, we can always consider separately the field coming from either
side and superpose the solutions. As the two problems are essentially identical, we shall assume
the incident field to be arriving from x>0, i.e. from the right in figure 1. By the general
theorems of § 2 we can obtain a formal explicit solution for the whole pressure field provided
we can derive a solution for either the pressure on the back of the strip or the pressure
gradient across AB and CD (figure 1).

Solutions for either of these quantities can be obtained ab initio in the general case by a
similar analysis to that for our previous special case of normally incident plane pulse. We
find first that, if the field is asymmetrical about the centre line of the strip, the application
of equations (2) and (13) to a point on 4B and to a point on CD (figure 1) leads to two distinct
integral equations involving two unknown functions, namely, ¥ on AB and ¥ on CD. These
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equations are, however, still linear and can be satisfied simultaneously by assuming a series
of the form (55) for each of the two unknown functions. The first term in each series is then
a solution of the half-plane problem corresponding to the upper or lower edge respectively,
whilst, after application of the Laplace transformation, the (r+1)th term in either series
is related to the rth term in the other series by an integral equation identical in-form with
equation (29). Much of the analysis is therefore essentially a repetition of the previous
analysis and can, in fact, be avoided if we make the following direct appeal to the physical
nature of the problem.

First, although the incident field is not necessarily symmetrical, we still have an inherent
symmetry in the strip itself and this can be used to advantage if we introduce two systems
of co-ordinates (x,7) and (x,y’) one to each edge, by writing

y':-—l—y, Y =—y, V=—y' =1-7, (128)
where y, Y as before are measured from the upper edge as origin and y’, Y’ similarly from

the lower edge.
We can now generalize equation (71) to express the pressure on the back of the strip

i the form by =F(X,0)+f(T',1), (129)
where F, frefer to diffraction effects arriving from the upper and lower edges respectively.
Corresponding to equation (78) we can then write

F(Y,8) = 3 (— 1) E(T,0),
0 (130)
S8 = 3 (1) (T, D),

r=0
in which successive terms represent successive diffraction waves from either edge.

The first term F, is then the solution for the incident field striking a half-plane extending
downwards from the upper edge of the strip, whilst f; is similarly the solution for a half-
plane extending upwards from the lower edge of the strip. The F;, wave will then produce
the f; wave from the lower edge and this in turn produces the F, wave from the upper edge
and so on. Thus F, leads to the 7-even F, functions and the r-odd f, functions whilst f; similarly
produces the 7-odd F, functions and the r-even f, functions.

Although the initial functions F,, f, depend directly on the incident field, the subsequent
production of F,,; by f, (and f,,; by F,) is identical with the production of F,,, by F, in the
symmetrical case and we can therefore generalize equation (81) to give

11T TTy) (Y
E,+1(Y, t) - 7—TJ'0 Y_l_IfO /\/(_Y—;) dKJ’

1R 4Yyt— YY) [T
-f;’-!-l(yit) —,’_TJVO YI+Y0 J(ﬁ)dlfo'

(131)

The only remaining problem is the determination of F, and f; in terms of the incident
field. Both these initial functions are solutions of the same general problem, namely, the
-diffraction of any incident field by a half-plane. The solution of this problem is given in
appendix B. If we denote the incident field by

b= Fz(y: t) on AB (ﬁgure 1)9}

(132)
bi=J{y',t) on CD (figure 1),
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then the solutions for F; and f, are

1 (= F(g,i—y—Y) (T
Fy(Y,1) Z;JO “———*“—Z(yy+ylf )A/(?) dy,

’ 1 f(yl7 t y, ,)//(——’) /
Y t) = — ¢ d .
ﬁ( b ) WJO y’_l,_ [ ’ y’ y

This completes the solution of the problem for any incident field. As in the special case of
the normally incident plane pulse, only a finite number of diffraction waves will be involved
up to any finite time after the incident field strikes the strip; the series in equation (130)
are thus effectively finite for practical application. For calculation purposes it may be noted
that the 7-even F, and r-odd f, functions form one set and similarly with fand Finterchanged
we have a second set independent of the first.

If desired, we can alternatively, or in addition, obtain the solution for the pressure gradient
¥ across AB and CD in figure 1. We have simply first to generalize equation (55) into two
series, one for ¢ on 4B and one for  on CD. The (r+1)th term in either series will then be
related to the rth term in the other series by an equation identical in form with equation (61).
Finally, the first term in either series will be the solution for ¥ in the half-plane problem
relevant to the appropriate edge; this solution can be expressed in terms of the incident
pressure gradient as shown in appendix B.

(133)

5. NUMERICAL CALCULATIONS. PLANE H(f) PULSE AT NORMAL INCIDENCE

5-1. Scope of calculations

Calculations of the pressure on the strip have been carried out for representative points
up to time ¢ = 3-1. By symmetry we need only calculate the pressures on half the strip, but
since any one diffraction wave G, is not symmetrical we must in fact calculate it over the
whole strip and points ¥ = 0-1, 0-3, 0-5, 0-7 and 0-9 were chosen for evaluation.

The function G, was tabulated from equation (85) and thence G; and G, were successively
evaluated from equation (86) using numerical integration. The values of these functions
are given in tables 1a, 15, 2 and 3 where it may be noted that for Y>1 the values were
required for the numerical integration and thus had to be tabulated fully with the intervals
of 0-1 in Y and 0-2 in 7 adopted for this integration. For 0<< Y <1, however, values of the
G, functions were only required at points at which the final results for pressure were required.
The values given in tables 1 and 15 for G, are accurate to errors of about three units or less
in the fourth decimal place. The values in tables 2 and 3 for G, and G, are subject to greater
errors arising in the numerical integration; independent checks for G, using different
integration processes indicated that G, and G, are unlikely to be in error by more than about
three units in the third decimal place.

The final values for the pressure on the back of the strip are given in table 4 and plotted
in figure 3. Since the interval 7 = 0-2 is relatively coarse for the initial part of a G, wave, the
values in table 1a for 7<<0-2 were evaluated to give points for figure 3 additional to those
provided by the main calculations of table 4.

In table 5 is given the average pressure on the back of the strip. This was calculated from
equations (109), (114) and (115) up to time ¢ = 2 and thereafter by numerical integration
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TABLE 1a. VALUEs oF G,(Y, 7) For 0<Y <1

N Y
0-1 0-3 05 0-7 0-9
T .
0 0 0 0 0 0
0-05 0-3918 0-2468 0-1950 0-1660 0-1476
0-1 0-5 0-3333 0-2677 0-2300 0-2048
0-2 0-6082 0-4360 0-3590 0-3125 0-2804
0-4 0-7047 0-5457 0-4645 0-4120 0-3743
0-6 0-7531 0-6082 0-5288 0-4754 0-4360
0-8 0-7837 0-6500 0-5742 0-5212 0-4813
1-0 0-8050 0-6812 0-6082 0-5564 0-5167
1-2 0-8212 0-7047 0-6350 0-5847 0-5457
14 0-8340 0-7238 0-6572 0-6082 0-5697
1-6 0-8442 0-7398 0-6755 0-6280 0-5903
1-8 0-8524 0-7531 0-6914 0-6449 0-6082
2-0 0-8601 0-7646 0-7047 0-6595 0-6239
2-2 0-8664 0-7748 0-7168 0-6729 0-6379
24 0-8715 0-7837 0-7277 0-6844
2-6 0-8766 0-7913 0-7366
2-8 0-8811 0-7983
30 0-8849
TaABLE 15. VALUES oF Gy(Y, 7) FOrR Y >1
1-0 11 1-2 1-3 1-4 1-5 1-6 17 1-8 1-9
0 0 0 0 0 0 0 0 0 0

0-2677 0-2566 0-2468 0-2380  0-2300 0-2229 0-2164 0-2103  0-2048  0-1997
0-3590 0-3454 0-3333 0-3224 0-3125 0:3035 0-2952 0-2875  0-2804
0-4195 04050 0-3918 0-3798 0-3689  0-3590  0-3498  0-3412

0-4645 0-4495 0-4360 04234 04120 0-4016 0-3918

05 0-4848 04710 0-4583  0-4467  0-4360

0-5288 0-5137 05 0-4872  0-4754

0-5532 0-5383  0-5244  0-5118

0-5742  0-5593  0-5457

0-5923  0-5775

0-6082

TaBLE 2. VALUEs oF G,(7, 7)

0-3 0-5 0-7 0-9 1-0 11 1-2 1-3 1-4

<
f—t

0 0 0 0 0 0 0 0 0 0
0-117 0-073 0-058 0-049 0-044 0-042 0-040 0-038 0-037 0-035
0-187 0-129 0-106 0-092 0-083 0-083 0-075 0-073 0-070

0-241 0-174 0-145 0-127 0-114 0-114 0-105 0-101

0-285 0-213 0-178 0-1568 0-143 0-142 0132

0-321 0-245 0-208 0-185 0-168 0-167

0-352 0-274 0-235 0-210 0-191

0-378 0-298 0-258 0-231

0-402 0-321 0-279

0-422 0-341

0-440

TABLE 3. VALUES OF G,(Y, 7) FOR 0<<Y <1

Y
\ 0-1 0-3 05 0-7 0-9
T
0 0 0 0 0 0
02 0-013 0-008 0-006 0-005 0-004
04 0-036 0-024 0-019 0-016
06 0-057 0-039 0-032
08 0-077 0-055
1-0 0-097
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TABLE 4. PRESSURE AT POINTS ON BACK OF STRIP

t Y =01 Y =03 Y=05 ¢ Y=0-1 Y=03 Y=05
0-1 0 0 0 1-7 1-084 1-151 1-154
0-3 0-608 0 4] 1-9 1-084 1-102 1-102
0-5 0-705 0-436 0 2-1 1-041 1-056 1-:062
0-7 0-753 0-546 0-718 2-3 1-014 1-021 1-026
0-9 0-784 0-920 0-930 25 1-006 0-996 0-994
1-1 1-085 1-062 1-058 2-7 0-997 0-985 0-976
1-3 1-078 1156 1-148 2:9 0-992 0-977 0-978
15 1-083 1-153 1216 31 0-993 0-981 0-980

TABLE 5. AVERAGE PRESSURES AND NET IMPULSE/UNIT AREA ON STRIP
t pd t bd
_ _ ¢ _ t
t by b J op ¢ by b f 01)
0-0 0-000 2-000 0-000 19 1-089 —0-179 0-809
0-2 0-200 1-600 0-360 2-0 1-:069 —0-138 0-793
04 0-400 1-200 0-640 2-1 1-049 —0-098 —_
0-6 0-600 0-800 0-840 22 — — 0774
0-8 0-800 0-400 0-960 2-3 1-:018 —0.036 —
1-0 1-000 0-000 1-000 24 — — 0-767
11 1-063 —0-127 0-993 2-5 0-999 0-002 —
1-2 1-:099 —0-199 0-976 2-6 — — 0-767
1-3 1-120 —0-241 0-954 27 0-988 0-024 —
14 1-131 —0-262 0-929 2-8 — — 0-772
15 1-133 —0-266 0-902 29 0-983 0-034 —
1-6 1-129 —0-259 0-876 30 — —_ 0-779
1.7 1-120 —0-240 0-851 31 0-986 0-028 —
1-8 1-107 —0-213 0-828 3-2 —_— — 0-784

over the strip using Woolhouse’s formula (see Whittaker & Robinson 1940, p. 158) and the
pressure calculations at the individual points. As an overall check on accuracy this latter
process was also applied during the interval 1</<2; comparison with the corresponding
values in table 5 derived from the exact equation (114) then indicated errors of 0-003 or
less in the average pressure due to the effects in combination of errors in the individual
pressures and in the numerical integration by Woolhouse’s formula. In the light of this
check and of the estimated accuracy of the G, tables it seems unlikely that the calculations
of the pressure at individual points are more than 0-005 in error.

From equation (94) values of the average net pressure on the strip were calculated as
given in table 5 and plotted in figure 4. Finally, also in table 5, values of the average net
impulse/unit area of strip are given. For <2 these values were calculated from equations
(115) to (118), whilst for £>>2 the values were obtained from equation (116) by using a
simple stepped integration (value at mid-point interval) for each successive interval of 0-2
beyond ¢ = 2. The net impulse/unit area is plotted against time in figure 5.

5:2. Discussion

Turning to the physical interpretation of our results, we note first that the pressure at any
point on the back is compounded of successive diffraction waves G, G, ... from both edges
of the strip. The even waves G, G,, ... give positive contributions whilst the odd waves
G, G, ... give negative contributions as seen from equations (71) and (88). In all these
waves the only discontinuity in pressure is that in G, when both ¥ = 0, ¢ = 0 and corre-
sponds to the initial discontinuity at either edge on the arrival of the sharp-fronted incident
pulse. Thereafter the pressure is continuous over the strip and at either edge will remain

Vol. 241. A. 13
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steady at the incident unit pressure. This is to be expected by continuity with the pressure
to the sides (i.e. on 4B and CD in figure 1) as given by equation (2). It can also be seen
from our solution since, by using the substitution ¥, = Y tan?# in equation (86), it is easily
shown that in the limit ¥ — 0 we obtain

G (0,7) = G,(1,7)  (r=0), | (134)

whence from equations (71) and (88) the pressure at an edge is given simply by G,(0,?)
which is equal to the incident unit pressure. ,
From equations (85) and (86) it is also easy to show that

G,(Y,7) c7¥ D when rsmall, Y>>0, (135)

and thus for given Y and increasing 7 the function G, has an initial infinite slope whilst the
function G, has an initial finite slope and all succeeding functions have initial zero slope.
The curves for pressure in figure 3 thus have discontinuities in slope at times corresponding
to the arrival of a G, or G, wave from either edge; whereas the former gives an increase to
an infinite slope, the latter gives a finite decrease of slope since G, is additive and G, sub-
tractive in the solution for pressure.

1-4

5

3 Ty
1-0 e —

1-2

incident, pressure.

08 /,_J

[

pressure

g 117
il

0 0-4 08 1-2 1-6 2-0 24 2-8 32
time
Ficure 3. Pressure at points on back of strip. 1, Y=0-1; 3, Y=0-3; and 5, Y=0-5.

0:6F sl
Nay.
/5
|

In figure 3 we see that, from the arrival of the first diffraction wave, the pressure at a point
on the back of the strip increases, until at time ¢ = 1 it has reached the incident value of
unity on all curves. Up to this time, the pressure on the back is simply the addition of the
half-plane diffraction waves from either edge, and it is easily seen that when ¢ = 1 the angles
involved in equation (85) are complementary for the two waves at any point, whence the
pressure is exactly unity everywhere on the back. By virtue of equations (3) and (10) we
thus see that there is exact equalization everywhere on the strip itself at time # = 1, i.e. in
the time taken by a sound wave to travel the breadth of the strip.

This equalization is, however, only instantaneous and the pressure thereafter continues
to increase until the arrival of the G; wave from the nearer edge. We thus have a period during
which the pressure on the back of the strip becomes greater than the incident pressure, the
excess being as much as 21 9%, at the centre of the strip where it is greatest. From equation


http://rsta.royalsocietypublishing.org/

A A

JA '\

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SOUND PULSES BY AN INFINITELY LONG STRIP 97

(3) we have pressures on the front of the strip which are correspondingly less than the
incident pressure. We may here note that the pressure-time curves for points on the front
of the strip are given simply by reflecting the curves of figure 3 in the line p = 1.

Whilst this ‘ over-equalization’ of pressure round the strip is not unexpected, it is interesting
to see from figure 3 that the excess pressure on the back lasts for about the same period for
all points on the strip, the pressure becoming approximately equalized over the strip at
¢t = 2-5. Thereafter, the pressure on the back continues to decrease at first and beyond the
range of calculations there is presumably a decaying oscillation about the incident pres-
sure p = 1. Since the calculations indicate that the first of these oscillations subsequent to
! = 2-5 (approximately) has a maximum deviation of less than 3 9, from the incident pres-
sure, any further calculations would demand more accurate evaluations of the G, functions
and would, of course, involve a steadily increasing number of these functions. The only
apparent point of possible physical interest in the subsequent oscillations lies in the extent
to which they are periodic and the resulting likelihood of any ‘resonance’ effects with an
incident periodic pulse. Such effects are essentially relevant to the problem of an incident
sinusoidal train of waves which lies outside the scope of the present paper. It may be

2:0
s 15
(5]
$—
]
= 10
g
2
S 05
8
g 0 =
|
-0-5 | , _
0 05 1.0 15 20 225 30 3%
time

Ficure 4. Variation of net force/unit area with time.

noted, however, that since a positive swing of 13 9, on average pressure during the period
1<¢<2'5 (approximately) is followed by a negative swing of less than 2 9%,, it seems likely
that subsequent oscillations will decay very rapidly with consequent small ‘resonance’
effects even if the oscillations become essentially periodic.

The average pressure on the back of the strip, as given in table 5, is linear up to f = 1 and
thereafter follows the same general course as the pressure-time curves for individual points
shown in figure 3 save that it is continuous in slope for >0 when plotted against time.

The most interesting feature of the results is probably the ¢ over-equalization’ phenomenon
which shows up clearly in the curve plotted in figure 4 for the variation of the net force/unit
area with time. Thus the net force on the strip rises instantaneously to a maximum corre-
sponding to complete reflexion of the incident pulse and then decays linearly to zero at
time ¢ = 1. It then becomes negative for the longer period to about ¢ = 2-5, the greatest
negative value being 13 9%, of the initial positive maximum, whilst the impulse in the negative
phase is nearly 25 %, of that in the initial positive phase. The net impulse exerted on unit
area of the strip up to any time is plotted in figure 5 where the curve is parabolic up to its

13-2
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maximum value of unity at # = 1 and then decreases to a minimum value of 0-767 at about
¢t = 2-5; thereafter the curve is presumably oscillatory about its asymptotic value of
+m = 0-785. It will be noted that the minimum at ¢ = 2-5 is within 2} %, of the asymptotic
value, and similarly integration with respect to time of our results for the pressure at in-
dividual points leads to minimum values at about ¢ = 2-5, which are within 3 9, of the
asymptotic values given by equation (124). The impulse calculations thus support the
pressure-time curves of figure 3 in suggesting that equalization is effectively reached, to
order 3 9, by time ¢ = 2-5.

1-0

0-8 ST

asymptotic value 74

ot
S
\

net impulse/unit area
(=] =]
A o

0 05 1-0 15 2-0 25 30 35
time

Ficure 5. Variation of net impulse/unit area with time.

Summing up, we have an initial period 0<</<1 in which pressure is being diffracted
round the strip to produce an exact equalization on the strip itself at time ¢ = 1. Secondly,
we have a period 1<¢<2-5 (approximately) in which the equalization process may be said
to overshoot and produce pressures on the back in excess of incident, up to a maximum
excess of 21 %, at the centre, with pressures correspondingly below incident pressure on the
front of the strip. Thirdly, at about ¢ = 2:5, the pressures are again effectively equalized
over the strip and thereafter any further oscillations are of order 3 %, or less in amplitude
with a probable rapid decay.

No calculations have as yet been carried out for pressures at points away from the strip.
For such points our solution will involve the numerical integration of equation (9) using
the values already calculated for the pressure on the back of the strip. It would undoubtedly
be better if the solution away from the strip could be expressed directly in terms of the G,
functions using a special co-ordinate system as in the half-plane problem. This has not been
found possible, but in any case it seems doubtful whether calculations of pressure away
from the strip would yield any new results of appreciable physical interest. Points on the
back of the strip are, in effect, in the deepest shadow, and figure 3 thus indicates the most
pronounced effects of diffraction to be expected in the problem.

6. CONCLUSION

In the present paper has been given an explicit solution and some numerical results for
the diffraction of a plane sound pulse of H(#) form (figure 2) incident normally on an infinite
strip. The general method of solution appears applicable to a number of two-dimensional
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diffraction problems involving sound pulses. In particular, it has already been applied to
solve the related problems of a slit in a reflecting wall and of a regular grating subjected to
the plane H(¢) pulse at normal incidence. The analysis and some numerical results for these
two problems will be given in further papers.

The extension of the solution to the general case of any two-dimensional pulse field in-
cident on the strip has also been given. This implies that theoretically we can tackle any two-
dimensional problem in which a known pulse field is incident on obstacles in the form of
strips arranged in arbitrary pattern. Practically, however, it seems fairly certain that the
labour of numerical evaluation would be too great, save in relatively simple cases.

For such problems a more comprehensive definition of incident field of pressure can be
used to replace the simple definition of § 2. This will be necessary, in general, to allow for
the scattered pulses from one strip being rescattered at a second strip and returning (in
modified form) to the first strip. Discussion of this more general problem lies outside the
scope of the present paper and is deferred to a further paper.

APPENDIX A

Direct check of equation (52)
To obtain a direct check on the relation (52), where [ is given by equation (51) and A is

a complex parameter with positive real part, we consider the left-hand side of equation
(52) which, from (51), may be written

A "Iy 8) Kofd |y =y [} dgo = 1+ 1, (136)

where I = lfye")“ng) (é)K Ay —yo)}tdy (137)
mlo Yo & N \yo/ o

o= [T J(E) Katato—)) (138)
)y Yo tEN \y) OO °

Now for K, we may write

i
Iﬂﬂlly—~y0|}=:J; e~Niisect sec 0 df), (139)

which may be regarded as the definition of K, throughout this paper since it was used in
introducing K, in equation (21) from equation (20) and we do not use any other properties
of this Macdonald Bessel function.

Considering I; we first change the variable of integration in equation (137) from y,
to u, where

Y=Yo=p (140)
and apply equation (139) to obtain ’
1 Y ArJE i
I, = —e""<5+y)f f e~Arseclsec §df dy. 141
I NN L g ()
We now change the variable of integration in the ¢ integral by writing
u(secl—1) = 2q (142)
. 1 _ Y JE © ¢~2dyq

to obtain I, = - ¢ 2+ f du, 143
et e Ju—i o Fater ™ 149)

13-3
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and if we now reverse the order of integration we find that the x integration can be per-
formed to give

2 o e—Z/\qQ
AP Y] L . S 144
e, ey ey (144
where Q =tan~! g::iirq (145)
We now consider 7, and first employ the substitution
Yo=Yy+n (146)
in equation (138) and substitute from equation (139) to obtain
L age[” JECM
I, e 6| [ Terructsecpapp. 147
2 =0 ey T JaTA g -
We now substitute ¢ for § in the second integral, where
u(1+sect) = 2q, (148)
) 1 _ ® JE © g2 dq
to obtain I, = =~ ¢~ 2+ f f du. 149
S Y e e ) A Clomm) R -

We can now reverse the order of integration by use of Dirichlet’s formula (see Bocher
1909, p. 4), to give

1 ©g=2Md (g q
=g wa 0 g f o (#ty+E) J{{iyiﬂ) )" (150
We can now perform the g integration to obtain
]2-__-_2_g~/\(§+y)fw~_~_&__(lﬂ_Q) dg (151)
m o Ha(g+y+E)}* ’
where @ is given as before by equation (145).
Hence adding equations (144) and (151) we have
Y R (152)
fitla=e o Halg Ty}

and if we employ a final substitution
29 = (§+y) (secf—1),

we find I+1 - Y garnsect sec 0.dD — K oA (E-+y)} (153)
0

by virtue of equation (139).
Hence, from equations (136) and (153), we have proved by direct integration the
required result

A, 00, 08) Kod |y =30 by = KA E+0)} €20,520),  (520i)

where /is defined by equation (51). When both £ and y are zero, our steps are invalid, since
integrals involved in the analysis become of infinite magnitude. This special case is, however,
trivial, since both sides of equation (52) are then infinite and we understand the equation
to mean in this case that the limit of the difference of the two sides is zero when both £ >0
and y—0 through positive values. This is true since our proof will hold throughout the
limiting process.
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AprPENDIX B

Half-plane subjected to any two-dimensional pulse field

We consider the general problem of a half-plane occupying the y-negative portion of the
(y,z) plane and subjected to any type of incident pulse field independent of z and arriving
from the right (x>0) of the half-plane. This problem is illustrated in figure 6 where the
arrows indicate that the incident field may be arriving from any or several directions on
the right. '

Ay /
B X

\
FiGure 6

In conformity with our notation for the strip problem we shall write

2 yn) (x=0), (154)
whence the boundary condition is
Vo(9,2) =0 (y<0). (155)
Using equations (2) and (13) we then obtain, with X—0,
2 ) = 5[ [ Sl t=r) dyydz, (156)

in which account has been taken of symmetry in z, whilst r is given by equation (16) as
before. In this equation (156), the left-hand side is the known incident pressure on 4B in
figure 6, and we have therefore an integral equation for ¢,.

To simplify this integral equation by using the Laplace transformation we shall need
a relation analogous to equation (18) and we therefore choose our origin of time sufficiently

early for Voly,t) =0 (¢<0), (157)

which can always be done if the incident field originates, as in practice, at a finite time prior
to its arrival at the edge of the half-plane. The case of a plane wave arriving obliquely from
above the half-plane, for which equation (157) is not satisfied, can be covered by con-
sidering thellimiting form of our solution for a source at a finite distance when this distance
increases indefinitely. The preceding choice of our origin of time is dependent essentially
on the physical nature of the problem. Thus Huygens’s principle in the form of equation (13)
states that the pressure to the rear will be affected ultimately by every part of the incident
field crossing AB in figure 6, and if the field crosses 4B prior to its arrival at the half-plane
we must include the contributions of such earlier crossing when we apply the Laplace
transformation.
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Using IT; and y, to denote the Laplace transforms of p; and y, then equation (156) can be
transformed to give, analogous to equation (21), the integral equation

A) = %J‘:Xo(yO:M Kol ly—y, |} dyy (y=0). (158)

Similarly, we can apply equation (13) to a point on the back of the half-plane and
transform to obtain, analogous to equation (69),

f Xo(¥0s A) KofA( Y+y,)} dy,, (159)

where A, is the Laplace transform of the pressure on the back at a distance Y from the edge.

If we now change the symbols in our basic relation (52) by writing Y for § and inter-
changing y and y,, we can substitute for K, in equation (159) ; thence by interchange of order
of integration and use of equation (158) we obtain

Ay(Y, 1) = Afny, I(1y,AY) dy. (160)

Hence using equation (51) and interpreting we obtain a solution for the pressure p, on
the back of the half-plane in the form

by = Fy(Y, 1) = ﬂf:pl(y’y’+y}, Y)J(Z)dy. (161)

In this form of solution the choice of origin of time is obviously immaterial and we can
conveniently change it to the time of arrival of the incident field at the edge of the half-
plane. The incident pressure cannot then arrive at any point on AB (figure 6) earlier than

time —y so that
pz’(ya t) =0 (t+y<0)> (162)
whence equation (161) indicates that
F(Y,t)=0 (t<Y), (163)

corresponding to the propagation of a diffraction wave down the back of the half-plane.

Further, it will be realized that the form of solution given by equation (161) remains
unchanged if we proceed from a source at a finite distance in the region x>0, y>0 to the
limiting case of infinite distance corresponding to a plane wave arriving obliquely from
above. For this case it can, in fact, be easily checked that equation (161) gives the known
solution in the form given by Friedlander (1946).

As discussed in §2 the general solution for the pressure anywhere can be expressed in
terms of F, by means of equations (1) and (9). Alternatively, we can use equations (1) and
(7) if we know the solution for ¥. This latter can be obtained most simply by applying
equations (2) and (7) to the problem for p—p, rather than p. If we write

Pie yin.t) (y>0)
_W(Y,h) (y=—T<0),

(164)
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we then obtain an integral equation relating ¢, —¢; and ¥; which after application of the
Laplace transformation becomes an integral equation similar to equation (29) but without
the unity term. This can then be solved by use of the basic relation (52) to give when inter-
preted

ol t) = il ) 4 [T =) (TN gy (165)
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